Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38597952

RESUMO

Epithelium-derived cytokines or alarmins, such as interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP), are major players in type 2 immunity and asthma. Here, we demonstrate that TNF-like ligand 1A (TL1A) is an epithelial alarmin, constitutively expressed in alveolar epithelium at steady state in both mice and humans, which cooperates with IL-33 for early induction of IL-9high ILC2s during the initiation of allergic airway inflammation. Upon synergistic activation by IL-33 and TL1A, lung ILC2s acquire a transient IL-9highGATA3low "ILC9" phenotype and produce prodigious amounts of IL-9. A combination of large-scale proteomic analyses, lung intravital microscopy, and adoptive transfer of ILC9 cells revealed that high IL-9 expression distinguishes a multicytokine-producing state-of-activated ILC2s with an increased capacity to initiate IL-5-dependent allergic airway inflammation. Similar to IL-33 and TSLP, TL1A is expressed in airway basal cells in healthy and asthmatic human lungs. Together, these results indicate that TL1A is an epithelium-derived cytokine and an important cofactor of IL-33 in the airways.


Assuntos
Asma , Interleucina-33 , Animais , Humanos , Camundongos , Alarminas , Citocinas , Imunidade Inata , Inflamação , Interleucina-9 , Linfócitos , Proteômica
2.
Front Immunol ; 13: 1029223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524131

RESUMO

Megakaryocytes (MKs) are large cells giving rise to platelets. It is well established that in adults, MKs develop from hematopoietic stem cells and reside in the bone marrow. MKs are also rare but normal constituents of the venous blood returning to the lungs, and MKs are found in the lung vasculature (MKcirc), suggesting that these cells are migrants from the bone marrow and get trapped in lung capillaries where the final steps of platelet production can occur. An unprecedented increase in the number of lung and circulating MKs was described in coronavirus disease 2019 (COVID-19) patients, suggesting that lung thrombopoiesis may be increased during lung infection and/or thromboinflammation. In addition to the population of platelet-producing intravascular MKs in the lung, a population of lung-resident megakaryocytes (MKL) has been identified and presents a specific immune signature compared to its bone marrow counterparts. Recent single-cell analysis and intravital imaging have helped us gain a better understanding of these populations in mouse and human. This review aims at summarizing the recent data on increased occurrence of lung MKs and discusses their origin, specificities, and potential role in homeostasis and inflammatory and infectious lung diseases. Here, we address remaining questions, controversies, and methodologic challenges for further studies of both MKcirc and MKL.


Assuntos
COVID-19 , Trombose , Humanos , Camundongos , Animais , Megacariócitos , Inflamação , Pulmão
3.
PLoS Pathog ; 18(7): e1010305, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849616

RESUMO

Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1ß secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1ß production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.


Assuntos
Inflamassomos , Piroptose , Animais , Proteínas Reguladoras de Apoptose/genética , Caspase 1/metabolismo , Exotoxinas/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/microbiologia , Pseudomonas aeruginosa/metabolismo
4.
Cell Rep ; 39(3): 110715, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443177

RESUMO

Tissue-resident innate lymphoid cells (ILCs) regulate tissue homeostasis, protect against pathogens at mucosal surfaces, and are key players at the interface of innate and adaptive immunity. How ILCs adapt their phenotype and function to environmental cues within tissues remains to be fully understood. Here, we show that Mycobacterium tuberculosis (Mtb) infection alters the phenotype and function of lung IL-18Rα+ ILC toward a protective interferon-γ-producing ILC1-like population. This differentiation is controlled by type 1 cytokines and is associated with a glycolytic program. Moreover, a BCG-driven type I milieu enhances the early generation of ILC1-like cells during secondary challenge with Mtb. Collectively, our data reveal how tissue-resident ILCs adapt to type 1 inflammation toward a pathogen-tailored immune response.


Assuntos
Imunidade Inata , Tuberculose , Citocinas , Humanos , Inflamação , Linfócitos
5.
J Clin Invest ; 130(4): 2041-2053, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961827

RESUMO

Cystic fibrosis (CF) lung disease is characterized by an inflammatory response that can lead to terminal respiratory failure. The cystic fibrosis transmembrane conductance regulator (CFTR) is mutated in CF, and we hypothesized that dysfunctional CFTR in platelets, which are key participants in immune responses, is a central determinant of CF inflammation. We found that deletion of CFTR in platelets produced exaggerated acute lung inflammation and platelet activation after intratracheal LPS or Pseudomonas aeruginosa challenge. CFTR loss of function in mouse or human platelets resulted in agonist-induced hyperactivation and increased calcium entry into platelets. Inhibition of the transient receptor potential cation channel 6 (TRPC6) reduced platelet activation and calcium flux, and reduced lung injury in CF mice after intratracheal LPS or Pseudomonas aeruginosa challenge. CF subjects receiving CFTR modulator therapy showed partial restoration of CFTR function in platelets, which may be a convenient approach to monitoring biological responses to CFTR modulators. We conclude that CFTR dysfunction in platelets produces aberrant TRPC6-dependent platelet activation, which is a major driver of CF lung inflammation and impaired bacterial clearance. Platelets and TRPC6 are what we believe to be novel therapeutic targets in the treatment of CF lung disease.


Assuntos
Plaquetas/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Pulmão/metabolismo , Pneumonia Bacteriana/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Animais , Plaquetas/patologia , Fibrose Cística/genética , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Ativação Plaquetária/genética , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/patologia , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo
6.
Am J Respir Cell Mol Biol ; 62(3): 364-372, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31647878

RESUMO

The immune system is designed to robustly respond to pathogenic stimuli but to be tolerant to endogenous ligands to not trigger autoimmunity. Here, we studied an endogenous damage-associated molecular pattern, mitochondrial DNA (mtDNA), during primary graft dysfunction (PGD) after lung transplantation. We hypothesized that cell-free mtDNA released during lung ischemia-reperfusion triggers neutrophil extracellular trap (NET) formation via TLR9 signaling. We found that mtDNA increases in the BAL fluid of experimental PGD (prolonged cold ischemia followed by orthotopic lung transplantation) and not in control transplants with minimal warm ischemia. The adoptive transfer of mtDNA into the minimal warm ischemia graft immediately before lung anastomosis induces NET formation and lung injury. TLR9 deficiency in neutrophils prevents mtDNA-induced NETs, and TLR9 deficiency in either the lung donor or recipient decreases NET formation and lung injury in the PGD model. Compared with human lung transplant recipients without PGD, severe PGD was associated with high levels of BAL mtDNA and NETs, with evidence of relative deficiency in DNaseI. We conclude that mtDNA released during lung ischemia-reperfusion triggers TLR9-dependent NET formation and drives lung injury. In PGD, DNaseI therapy has a potential dual benefit of neutralizing a major NET trigger (mtDNA) in addition to dismantling pathogenic NETs.


Assuntos
Isquemia Fria/efeitos adversos , DNA Mitocondrial/farmacologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/efeitos dos fármacos , Disfunção Primária do Enxerto/imunologia , Receptor Toll-Like 9/fisiologia , Lesão Pulmonar Aguda/etiologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Citrulinação , DNA Mitocondrial/administração & dosagem , Desoxirribonuclease I/metabolismo , Humanos , Transplante de Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Disfunção Primária do Enxerto/metabolismo , Proteína-Arginina Desiminase do Tipo 4/deficiência , Proteína-Arginina Desiminase do Tipo 4/fisiologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Organismos Livres de Patógenos Específicos , Receptor Toll-Like 9/deficiência , Isquemia Quente/efeitos adversos
7.
Physiology (Bethesda) ; 34(6): 392-401, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577166

RESUMO

Megakaryocytes are normal cellular components of the blood returning to the heart and entering the lungs, and historical data has pointed to a role of the lungs in platelet production. Recent studies using intravital microscopy have demonstrated that platelet release occurs in the lung from bone marrow megakaryocytes that embolize into the lung circulation.


Assuntos
Plaquetas/fisiologia , Pulmão/fisiologia , Animais , Medula Óssea/fisiologia , Humanos , Megacariócitos/fisiologia
8.
Am J Respir Crit Care Med ; 199(9): 1076-1085, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888839

RESUMO

Rationale: Extracellular DNA (eDNA) and neutrophil extracellular traps (NETs) are implicated in multiple inflammatory diseases. NETs mediate inflammasome activation and IL-1ß secretion from monocytes and cause airway epithelial cell injury, but the role of eDNA, NETs, and IL-1ß in asthma is uncertain. Objectives: To characterize the role of activated neutrophils in severe asthma through measurement of NETs and inflammasome activation. Methods: We measured sputum eDNA in induced sputum from 399 patients with asthma in the Severe Asthma Research Program-3 and in 94 healthy control subjects. We subdivided subjects with asthma into eDNA-low and -high subgroups to compare outcomes of asthma severity and of neutrophil and inflammasome activation. We also examined if NETs cause airway epithelial cell damage that can be prevented by DNase. Measurements and Main Results: We found that 13% of the Severe Asthma Research Program-3 cohort is "eDNA-high," as defined by sputum eDNA concentrations above the upper 95th percentile value in health. Compared with eDNA-low patients with asthma, eDNA-high patients had lower Asthma Control Test scores, frequent history of chronic mucus hypersecretion, and frequent use of oral corticosteroids for maintenance of asthma control (all P values <0.05). Sputum eDNA in asthma was associated with airway neutrophilic inflammation, increases in soluble NET components, and increases in caspase 1 activity and IL-1ß (all P values <0.001). In in vitro studies, NETs caused cytotoxicity in airway epithelial cells that was prevented by disruption of NETs with DNase. Conclusions: High extracellular DNA concentrations in sputum mark a subset of patients with more severe asthma who have NETs and markers of inflammasome activation in their airways.


Assuntos
Asma/fisiopatologia , DNA/metabolismo , Armadilhas Extracelulares/fisiologia , Inflamassomos/fisiologia , Doença Aguda , Adulto , Asma/imunologia , Asma/metabolismo , Western Blotting , Estudos de Casos e Controles , Feminino , Glucosefosfato Desidrogenase/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neutrófilos/fisiologia
9.
Am J Respir Cell Mol Biol ; 61(2): 232-243, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30768917

RESUMO

Platelets are recruited to inflammatory foci and contribute to host defense and inflammatory responses. Compared with platelet recruitment in hemostasis and thrombosis, the mechanisms of platelet recruitment in inflammation and host defense are poorly understood. Neutrophil recruitment to lung airspaces after inhalation of bacterial LPS requires platelets and PSGL-1 in mice. Given this association between platelets and neutrophils, we investigated whether recruitment of platelets to lungs of mice after LPS inhalation was dependent on PSGL-1, P-selectin, or interaction with neutrophils. BALB/c mice were administered intranasal LPS (O55:B5, 5 mg/kg) and, 48 hours later, lungs were collected and platelets and neutrophils quantified in tissue sections by immunohistochemistry. The effects of functional blocking antibody treatments targeting the platelet-neutrophil adhesion molecules, P-selectin or PSGL-1, or treatment with a neutrophil-depleting antibody targeting Ly6G, were tested on the extent of LPS-induced lung platelet recruitment. Separately in Pf4-Cre × mTmG mice, two-photon intravital microscopy was used to image platelet adhesion in live lungs. Inhalation of LPS caused both platelet and neutrophil recruitment to the lung vasculature. However, decreasing lung neutrophil recruitment by blocking PSGL-1, P-selectin, or depleting blood neutrophils had no effect on lung platelet recruitment. Lung intravital imaging revealed increased adhesion of platelets in the lung microvasculature which was not associated with thrombus formation. In conclusion, platelet recruitment to lungs in response to LPS occurs through mechanisms distinct from those mediating neutrophil recruitment, or the occurrence of pulmonary emboli.


Assuntos
Plaquetas/metabolismo , Pulmão/metabolismo , Glicoproteínas de Membrana/metabolismo , Microcirculação , Neutrófilos/metabolismo , Selectina-P/metabolismo , Adesividade Plaquetária , Administração Intranasal , Animais , Antígenos Ly/metabolismo , Adesão Celular , Feminino , Inflamação , Lipopolissacarídeos , Pulmão/irrigação sanguínea , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos , Embolia Pulmonar/metabolismo
10.
JCI Insight ; 3(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29415887

RESUMO

Neutrophils dominate the early immune response in pathogen-induced acute lung injury, but efforts to harness their responses have not led to therapeutic advancements. Neutrophil extracellular traps (NETs) have been proposed as an innate defense mechanism responsible for pathogen clearance, but there are concerns that NETs may induce collateral damage to host tissues. Here, we detected NETs in abundance in mouse models of severe bacterial pneumonia/acute lung injury and in human subjects with acute respiratory distress syndrome (ARDS) from pneumonia or sepsis. Decreasing NETs reduced lung injury and improved survival after DNase I treatment or with partial protein arginine deiminase 4 deficiency (PAD4+/-). Complete PAD4 deficiency (PAD4-/-) reduced NETs and lung injury but was counterbalanced by increased bacterial load and inflammation. Importantly, we discovered that the lipoxin pathway could be a potent modulator of NET formation, and that mice deficient in the lipoxin receptor (Fpr2-/-) produced excess NETs leading to increased lung injury and mortality. Lastly, we observed in humans that increased plasma NETs were associated with ARDS severity and mortality, and lower plasma DNase I levels were associated with the development of sepsis-induced ARDS. We conclude that a critical balance of NETs is necessary to prevent lung injury and to maintain microbial control, which has important therapeutic implications.


Assuntos
Armadilhas Extracelulares/imunologia , Lesão Pulmonar/imunologia , Pneumonia Bacteriana/imunologia , Síndrome do Desconforto Respiratório/imunologia , Sepse/imunologia , Animais , Bactérias/imunologia , Carga Bacteriana/efeitos dos fármacos , Carga Bacteriana/imunologia , Desoxirribonuclease I/administração & dosagem , Modelos Animais de Doenças , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/microbiologia , Lesão Pulmonar/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia Bacteriana/microbiologia , Proteína-Arginina Desiminase do Tipo 4 , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/imunologia , Receptores de Formil Peptídeo/metabolismo , Síndrome do Desconforto Respiratório/microbiologia , Sepse/microbiologia
13.
Nature ; 544(7648): 105-109, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28329764

RESUMO

Platelets are critical for haemostasis, thrombosis, and inflammatory responses, but the events that lead to mature platelet production remain incompletely understood. The bone marrow has been proposed to be a major site of platelet production, although there is indirect evidence that the lungs might also contribute to platelet biogenesis. Here, by directly imaging the lung microcirculation in mice, we show that a large number of megakaryocytes circulate through the lungs, where they dynamically release platelets. Megakaryocytes that release platelets in the lungs originate from extrapulmonary sites such as the bone marrow; we observed large megakaryocytes migrating out of the bone marrow space. The contribution of the lungs to platelet biogenesis is substantial, accounting for approximately 50% of total platelet production or 10 million platelets per hour. Furthermore, we identified populations of mature and immature megakaryocytes along with haematopoietic progenitors in the extravascular spaces of the lungs. Under conditions of thrombocytopenia and relative stem cell deficiency in the bone marrow, these progenitors can migrate out of the lungs, repopulate the bone marrow, completely reconstitute blood platelet counts, and contribute to multiple haematopoietic lineages. These results identify the lungs as a primary site of terminal platelet production and an organ with considerable haematopoietic potential.


Assuntos
Plaquetas/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Pulmão/irrigação sanguínea , Pulmão/citologia , Animais , Medula Óssea , Linhagem da Célula , Feminino , Pulmão/anatomia & histologia , Masculino , Megacariócitos/citologia , Camundongos , Microcirculação , Contagem de Plaquetas , Trombocitopenia/patologia
14.
Proc Natl Acad Sci U S A ; 111(43): 15502-7, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313073

RESUMO

Interleukin-33 (IL-33) is an alarmin cytokine from the IL-1 family. IL-33 activates many immune cell types expressing the interleukin 1 receptor-like 1 (IL1RL1) receptor ST2, including group-2 innate lymphoid cells (ILC2s, natural helper cells, nuocytes), the major producers of IL-5 and IL-13 during type-2 innate immune responses and allergic airway inflammation. IL-33 is likely to play a critical role in asthma because the IL33 and ST2/IL1RL1 genes have been reproducibly identified as major susceptibility loci in large-scale genome-wide association studies. A better understanding of the mechanisms regulating IL-33 activity is thus urgently needed. Here, we investigated the role of mast cells, critical effector cells in allergic disorders, known to interact with ILC2s in vivo. We found that serine proteases secreted by activated mast cells (chymase and tryptase) generate mature forms of IL-33 with potent activity on ILC2s. The major forms produced by mast cell proteases, IL-33(95-270), IL-33(107-270), and IL-33(109-270), were 30-fold more potent than full-length human IL-33(1-270) for activation of ILC2s ex vivo. They induced a strong expansion of ILC2s and eosinophils in vivo, associated with elevated concentrations of IL-5 and IL-13. Murine IL-33 is also cleaved by mast cell tryptase, and a tryptase inhibitor reduced IL-33-dependent allergic airway inflammation in vivo. Our study identifies the central cleavage/activation domain of IL-33 (amino acids 66-111) as an important functional domain of the protein and suggests that interference with IL-33 cleavage and activation by mast cell and other inflammatory proteases could be useful to reduce IL-33-mediated responses in allergic asthma and other inflammatory diseases.


Assuntos
Imunidade Inata/imunologia , Interleucinas/química , Interleucinas/metabolismo , Linfócitos/imunologia , Mastócitos/enzimologia , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-33 , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Peso Molecular , Mutação Puntual/genética , Estrutura Terciária de Proteína , Deleção de Sequência/genética
15.
Gut ; 62(12): 1714-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23172891

RESUMO

OBJECTIVE: Inflammatory bowel diseases (IBD) have been intrinsically linked to a deregulated cytokine network, but novel therapeutic principles are urgently needed. Here we identify the interleukin (IL)-33 and its receptor ST2 as key negative regulators of wound healing and permeability in the colon of mice. DESIGN: Expression of IL-33 and ST2 was determined by qRT-PCR, ELISA, immunohistochemistry and western-blot analysis. Wild-type and St2(-/-) mice were used in wound healing experiments and in two experimental models of IBD triggered by 2,4,6-trinitrobenzene sulphonic acid or dextran sodium sulphate (DSS). Neutralisation of ST2 was performed by using a specific blocking antibody. RESULTS: Nuclear localisation and enhanced expression of IL-33 in myofibroblasts and enterocytes was linked to disease involvement independently of inflammation, while the expression of ST2 was primarily restricted to the colonic epithelia. In two experimental models of IBD, genetic ablation of ST2 significantly improved signs of colitis, while a sustained epithelial expression of the cyto-protective factor connexin-43 was observed in DSS-treated St2-deficient mice. Unexpectedly, absence of ST2 in non-hematopoietic cells was sufficient to protect against colitis. Consistently, specific inhibition of endogenous ST2-mediated signalling by treatment with neutralising antibody improved DSS-induced colitis. In addition, IL-33 treatment impaired epithelial barrier permeability in vitro and in vivo, whereas absence of ST2 enhanced wound healing response upon acute mechanical injury in the colon. CONCLUSIONS: Our study unveiled a novel non-hematopoietic function of IL-33 in epithelial barrier function and wound healing. Therefore, blocking the IL-33/ST2 axis may represent an efficient therapy in IBD.


Assuntos
Colite Ulcerativa/etiologia , Interleucinas/fisiologia , Receptores de Interleucina/fisiologia , Animais , Western Blotting , Células CACO-2 , Colite Ulcerativa/fisiopatologia , Colite Ulcerativa/terapia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Reação em Cadeia da Polimerase em Tempo Real , Cicatrização/fisiologia
16.
Proc Natl Acad Sci U S A ; 109(5): 1673-8, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307629

RESUMO

Interleukin-33 (IL-33) (NF-HEV) is a chromatin-associated nuclear cytokine from the IL-1 family, which has been linked to important diseases, including asthma, rheumatoid arthritis, ulcerative colitis, and cardiovascular diseases. IL-33 signals through the ST2 receptor and drives cytokine production in type 2 innate lymphoid cells (ILCs) (natural helper cells, nuocytes), T-helper (Th)2 lymphocytes, mast cells, basophils, eosinophils, invariant natural killer T (iNKT), and natural killer (NK) cells. We and others recently reported that, unlike IL-1ß and IL-18, full-length IL-33 is biologically active independently of caspase-1 cleavage and that processing by caspases results in IL-33 inactivation. We suggested that IL-33, which is released upon cellular damage, may function as an endogenous danger signal or alarmin, similar to IL-1α or high-mobility group box 1 protein (HMGB1). Here, we investigated the possibility that IL-33 activity may be regulated by proteases released during inflammation. Using a combination of in vitro and in vivo approaches, we demonstrate that neutrophil serine proteases cathepsin G and elastase can cleave full-length human IL-33(1-270) and generate mature forms IL-33(95-270), IL-33(99-270), and IL-33(109-270). These forms are produced by activated human neutrophils ex vivo, are biologically active in vivo, and have a ~10-fold higher activity than full-length IL-33 in cellular assays. Murine IL-33 is also cleaved by neutrophil cathepsin G and elastase, and both full-length and cleaved endogenous IL-33 could be detected in the bronchoalveolar lavage fluid in an in vivo model of acute lung injury associated with neutrophil infiltration. We propose that the inflammatory microenvironment may exacerbate disease-associated functions of IL-33 through the generation of highly active mature forms.


Assuntos
Catepsina G/metabolismo , Interleucinas/metabolismo , Elastase de Leucócito/metabolismo , Processamento de Proteína Pós-Traducional , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Interleucina-33 , Camundongos , Camundongos Endogâmicos BALB C , Ativação de Neutrófilo , Neutrófilos/metabolismo
17.
J Immunol ; 188(7): 3488-95, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22371395

RESUMO

IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.


Assuntos
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , Interleucinas/fisiologia , Tecido Linfoide/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Células Epiteliais/ultraestrutura , Feminino , Proteínas Fetais/biossíntese , Proteínas Fetais/genética , Genes Reporter , Humanos , Interleucina-33 , Interleucinas/biossíntese , Interleucinas/genética , Óperon Lac , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Eosinofilia Pulmonar/induzido quimicamente , Eosinofilia Pulmonar/imunologia , Eosinofilia Pulmonar/metabolismo , Choque Séptico/imunologia , Choque Séptico/metabolismo , Especificidade da Espécie
18.
Eur Cytokine Netw ; 23(4): 120-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23306193

RESUMO

Interleukin-33 (IL-33) is the latest member of the IL-1 family that has become very attractive since the discovery of its major target cells, the innate lymphoid cells type 2 (ILC2), involved in the initiation of the type 2 immune response (secretion of IL-5 and IL-13) during parasitic infection and allergic diseases such as asthma. IL-33 is a chromatin-associated protein as it possesses in its N-terminus, a chromatin-binding domain, and is constitutively expressed in the nuclei of endothelial cells and in epithelial cells of tissues exposed to the environment. It is however, essential for IL-33 to be extracellularly released to bind to its receptor ST2 through the C-terminus portion of the protein in order to induce the inflammatory and type 2 responses. Like other IL-1 family members, IL-33 does not possess any signal peptide and may be released through unconventional secretory mechanisms or following cell damage and necrosis. It was initially believed that IL-33, like IL-1ß and IL-18, requires processing by caspase-1 to be released, and for biological activity. On the contrary, full length IL-33 is biologically active, and processing by caspases results rather in IL-33 inactivation. Moreover, it has been recently shown that the bioactivity of IL-33 can be increased by inflammatory proteases secreted in the microenvironment, similarly to IL-1α, IL-1ß and IL-18. This review will summarize recent progress on how IL-33 is released and processed compared with the other IL-1 family members, and how the immune cells recruited to the site of injury can regulate the disease-associated function of IL-33.


Assuntos
Interleucina-1/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...